

### **EUROPEAN EUROPEAN EUROPEAN Solution Solution** 12-14 November 2013 (Brussels)

#### Coal gasification in Spain – the future of sustainable coal

Francisco García Peña – ELCOGAS Puertollano IGCC plant



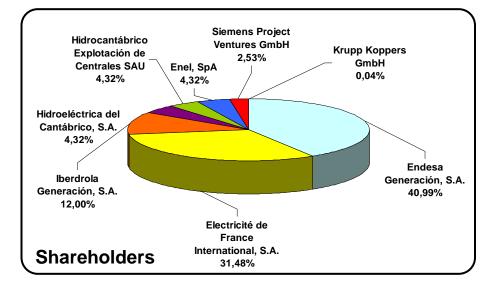


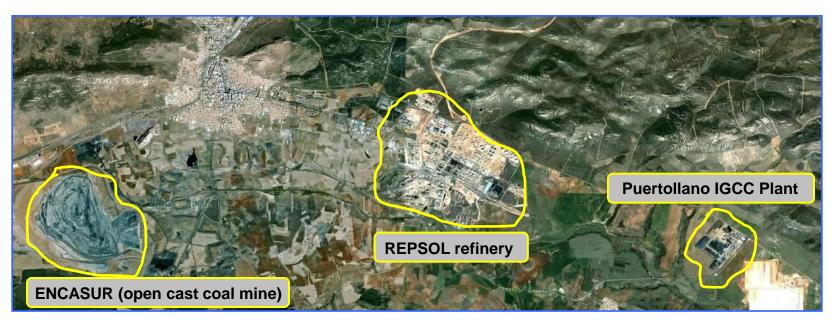






### **1.1 Introduction**


- 1.2 Description of the IGCC process
- 1.3 Operational data
- 1.4 CO<sub>2</sub> separation and H<sub>2</sub> production
- 1.5 Flexibility of feeding and products




### The ELCOGAS company



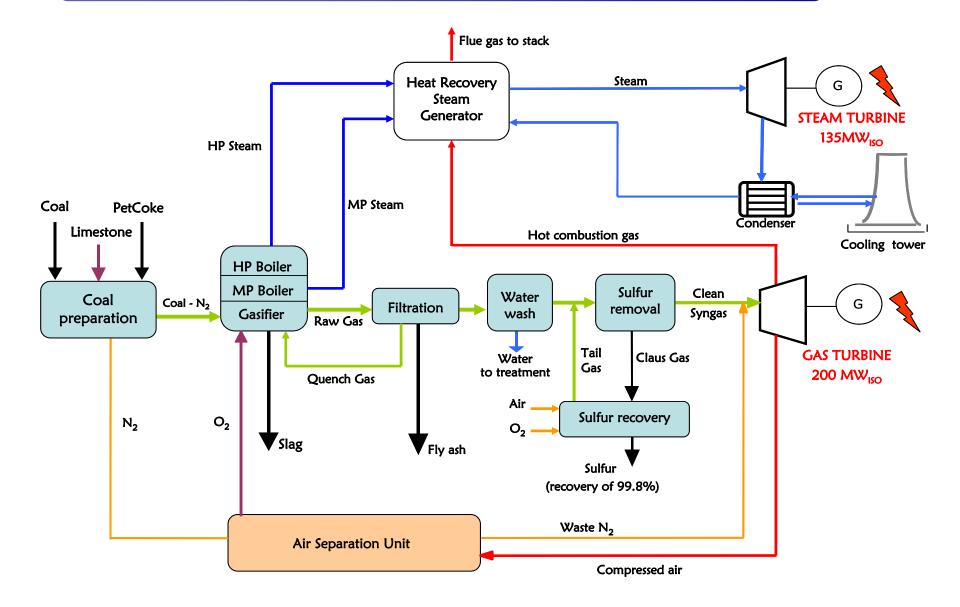
ELCOGAS is an Spanish company established in April 1992 to undertake the planning, construction, management and operation of a 335 MWe<sub>ISO</sub> IGCC plant located in Puertollano (Spain)










#### **1.1 Introduction**

### 1.2 Description of the IGCC process

- 1.3 Operational data
- 1.4 CO<sub>2</sub> separation and H<sub>2</sub> production
- 1.5 Flexibility of feeding and products

## Description of the ELCOGAS IGCC process









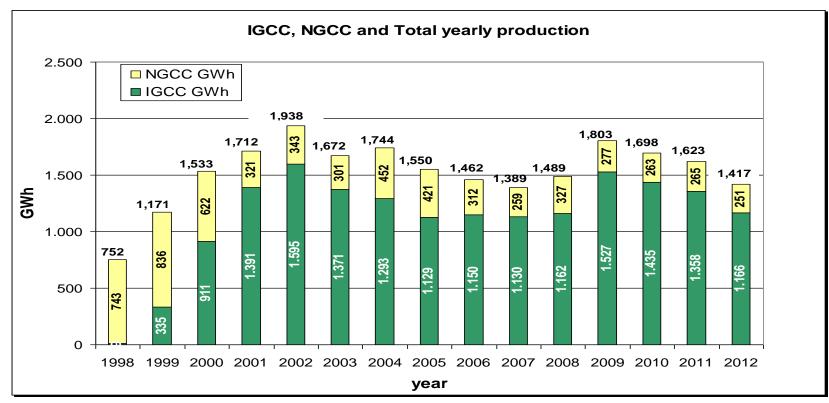
#### Fuel design values

Fuel design is a mixture 50/50 of coal/coke which now is 45/55. Moreover some tests with biomass were undertaken (meat bone meal, grape seed meal, olive oil waste).

|               |               | COAL  | PET COKE | FUEL MIX<br>(50:50) |
|---------------|---------------|-------|----------|---------------------|
|               | Moisture (%w) | 11.8  | 7.00     | 9.40                |
| $\rightarrow$ | Ash (%w)      | 41.10 | 0.26     | 20.68               |
|               | C (%w)        | 36.27 | 82.21    | 59.21               |
|               | H (%w)        | 2.48  | 3.11     | 2.80                |
|               | N (%w)        | 0.81  | 1.90     | 1.36                |
|               | <b>O</b> (%w) | 6.62  | 0.02     | 3.32                |
| $\rightarrow$ | S (%w)        | 0.93  | 5.50     | 3.21                |
|               | LHV (MJ/kg)   | 13.10 | 31.99    | 22.55               |

With those fuels at 50:50, the whole plant demonstrated a gross efficiency of **47,2**% and a net efficiency of **42**%, under acceptance tests in 2000 year

#### **Syngas** composition


| RAW GAS              |              |        | CLEAN GAS              |              |        |
|----------------------|--------------|--------|------------------------|--------------|--------|
|                      | Real average | Design |                        | Real average | Design |
| CO (%)               | 59.26        | 61.25  | CO (%)                 | 59.30        | 60.51  |
| H <sub>2</sub> (%)   | 21.44        | 22.33  | H <sub>2</sub> (%)     | 21.95        | 22.08  |
| CO <sub>2</sub> (%)  | 2.84         | 3.70   | CO <sub>2</sub> (%)    | 2.41         | 3.87   |
| N <sub>2</sub> (%)   | 13.32        | 10.50  | N <sub>2</sub> (%)     | 14.76        | 12.5   |
| Ar (%)               | 0.90         | 1.02   | Ar (%)                 | 1.18         | 1.03   |
| H <sub>2</sub> S (%) | 0.81         | 1.01   | H <sub>2</sub> S(ppmv) | 3            | 6      |
| COS (%)              | 0.19         | 0.17   | COS (ppmv)             | 9            | 6      |
| HCN (ppmv)           | 23           | 38     | HCN (ppmv)             | -            | 3      |





- 1.1 Introduction
- 1.2 Description of the IGCC process
- 1.3 Operational data
- 1.4 CO<sub>2</sub> separation and H<sub>2</sub> production
- 1.5 Flexibility of feeding and products





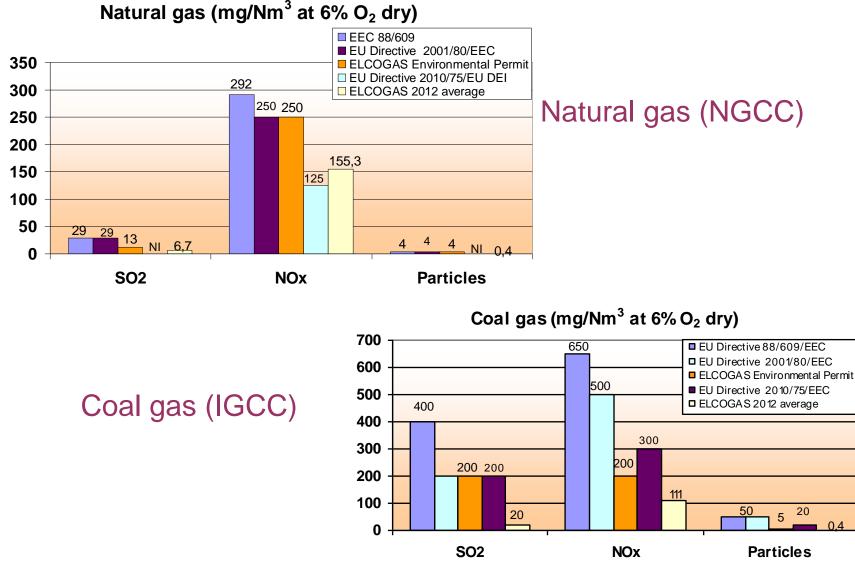
1<sup>st</sup> 5 years: Learning curve

2003: Major overhaul Gas Turbine findings

**2004 & 2005**: Gas turbine main generation transformer isolation fault

2006: Gas turbine major overhaul & candle fly ash filters crisis

**2007 & 2008**: ASU  $WN_2$  compressor coupling fault and repair MAN TURBO


**2010**: No operation due to non-profitable electricity price (30-40 days).

2011: 100,000 EOH Major Overhaul

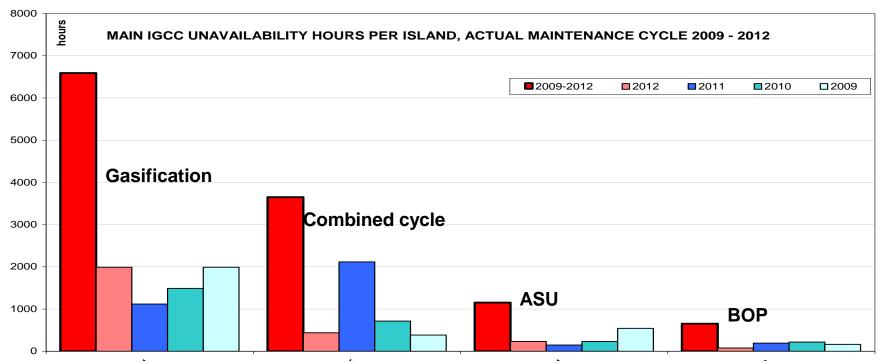
2012: 1,498 hours in stand-by due to regulatory restrictions. (3,969 in 2013)







ELCOGAS power plant emissions in NGCC & IGCC modes






| Fuel mode  | Fuel                       | Consume<br>(GI <sub>PCS</sub> ) | Production<br>(GWh) | Heat rate<br>(GJ <sub>PCS</sub> /GWh) | Fuel cost<br>(€/ GJ <sub>PCS</sub> ) | Partial cost<br>(€/ MWh) | Total cost<br>(€/ MWh) |
|------------|----------------------------|---------------------------------|---------------------|---------------------------------------|--------------------------------------|--------------------------|------------------------|
| ਯ          | Natural gas                | 59.987                          | 2,891               | 20.748                                | 10,46                                | 216,98                   | 216,98                 |
| NGCC       | Natural gas                | 249.495                         | 22,154              | 11.262                                | 10,46                                | 117,77                   | 117,77                 |
| NGCC + ASU | Natural gas                | 1.854.675                       | 155,148             | 11.954                                | 10,46                                | 125,01                   | 125,01                 |
| NGCC+ASU+  | Natural gas                | 351.147                         | 33,373              | 10.522                                | 10,46                                | 110,03                   |                        |
| Gasifier   | Coal                       | 67.459                          |                     | 2.021                                 | 3,49                                 | 7,05                     | 128,69                 |
| (by flare) | Petocke                    | 195.947                         |                     | 5.871                                 | 1,98                                 | 11,61                    |                        |
| IGCC       | NG auxiliar<br>consumption | 257.700                         | 992,811             | 260                                   | 10,46                                | 2,71                     |                        |
|            | Coal                       | 2.536.891                       |                     | 2.555                                 | 3,49                                 | 8,91                     | 26,30                  |
|            | Petocke                    | 7.368.734                       |                     | 7.422                                 | 1,98                                 | 14,67                    |                        |

Note: Net energy variable costs (average 2012)

Unavailability in 4 years maintenance cycle (2009–2012)

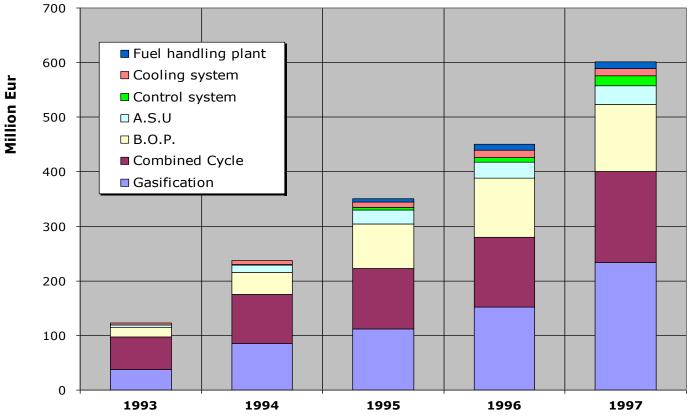


#### Technology at demonstration state

★ First four large coal-based plants (USA & EU, 1994 - 1998) show 60-80% of IGCC availability (> 90 % considering auxiliary fuel)

\* Main unavailability causes related with its maturity lack :

\* Auxiliary system design: solid handling, downtime corrosion, ceramic filters, materials and procedures


- \* Performance of last generation turbines with syngas or natural gas
- Excessive integration between units. High dependence and start-up delay

\* More complex process compared to other coal-based plants. Learning is necessary. IGCC power plants using petroleum wastes show higher availability than 92%





#### **ACCUMULATED INVESTMENT COSTS**

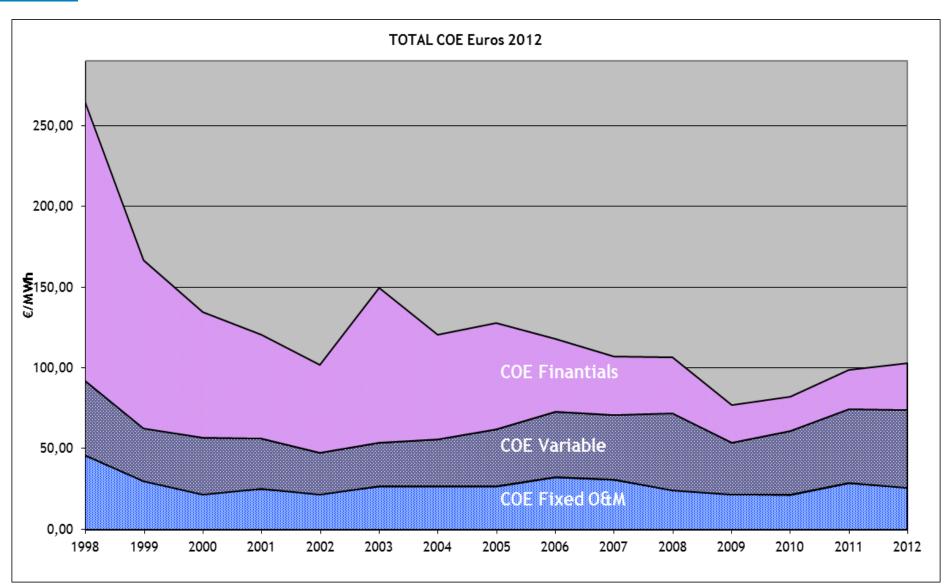


**REPRESENTATIVE YEAR (2008) OPERATING COSTS**, WITHOUT FINANCIAL COSTS:

Total: 83,602 k€ (57.98 €/MWh)

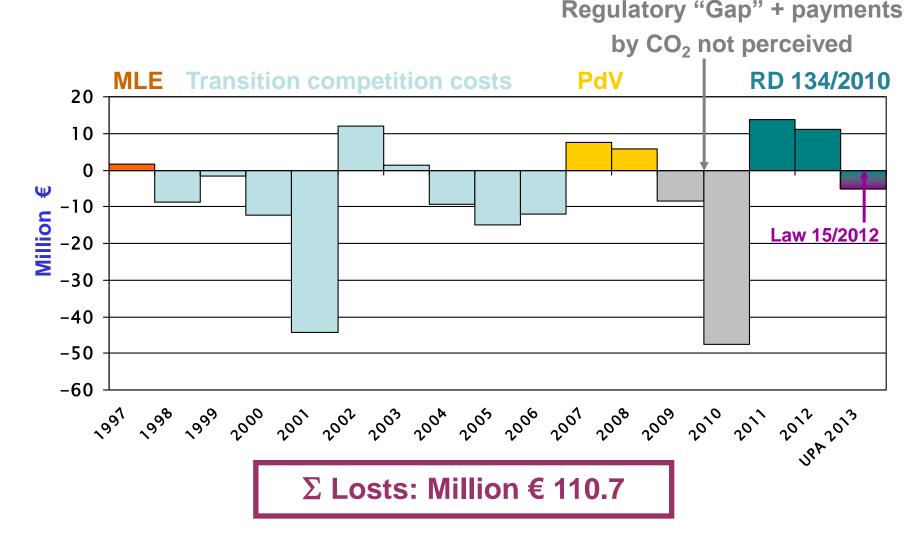
#### □ Fixed costs:

□ Variable costs:


■Total: 29,326 k€ (20.39 €/MWh)

Fuels: 54,276 k€ (37.59 €/MWh)



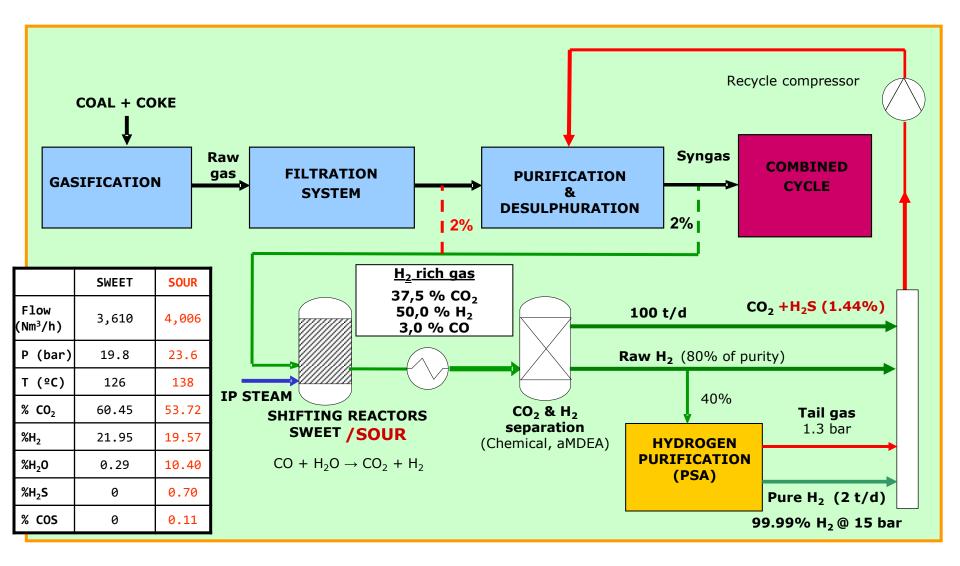

### Cost Of Electricity (€<sub>2012</sub>/MWh)





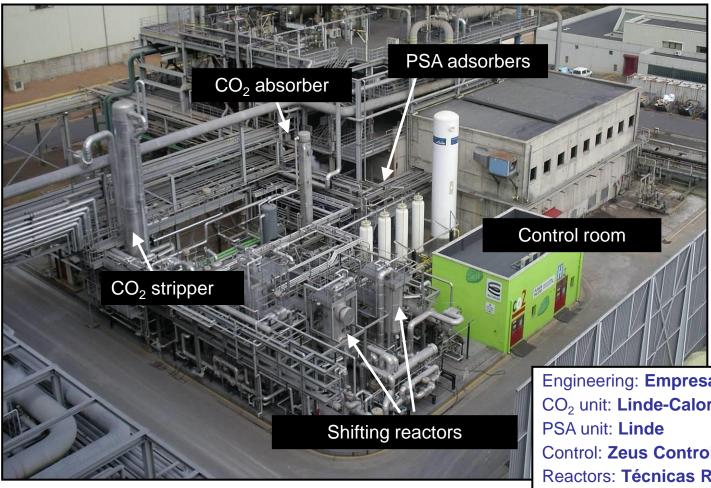


# Benefit or lost before taxes is directly related to the existing regulatory framework









- **1.1 Introduction**
- 1.2 Description of the IGCC process
- 1.3 Operational data
- 1.4 CO<sub>2</sub> separation and H<sub>2</sub> production
- 1.5 Flexibility of feeding and products

## $\mathbf{R} \mathbf{CO}_2$ capture & $\mathbf{H}_2$ production: pilot plant









Engineering: Empresarios Agrupados CO<sub>2</sub> unit: Linde-Caloric PSA unit: Linde Control: Zeus Control Reactors: Técnicas Reunidas Catalysts: Johnson Matthey Construction: Empresas locales





- **1.1 Introduction**
- 1.2 Description of the IGCC process
- 1.3 Operational data
- 1.4 CO2 separation and H2 production
- 1.5 Flexibility of feeding and products



O/iv



| ve oil wastes (Orujillo) | Almond shells    | F |
|--------------------------|------------------|---|
|                          |                  |   |
| Nooden splinters         | Vineyard pruning |   |

#### **Preselected biomass**

| Battery of biomass co-gasification tests |                     |                                   |                |                         |  |
|------------------------------------------|---------------------|-----------------------------------|----------------|-------------------------|--|
| Test Month/Year                          | BIOMASS             | Biomass<br>dosage<br>ratio (% wt) | Biomass<br>(t) | Test<br>Duration<br>(h) |  |
| 2001                                     | Meat Bone<br>& Meal | 1-4.5%                            | 93.3           | 15                      |  |
| 2007-2009                                |                     | 1-2 %                             | 1,572.8        | 800.3                   |  |
| 2008                                     | Olive oil<br>waste  | 4%                                | 652.1          | 154                     |  |
| Mar 2009                                 |                     | 6%                                | 395.8          | 64.4                    |  |
| Jun 2009                                 |                     | 8%                                | 383.9          | 46                      |  |
| Sept 2009                                |                     | 10%                               | 656.6          | 62                      |  |
| Nov-Dec 2011                             | Olive oil           | 2%                                | 218.1          | 106                     |  |
| Oct-Nov 2012                             | waste               | 4%                                | 409.3          | 153.5                   |  |
| Oct 2012                                 | Grape               | 2%                                | 179.3          | 127                     |  |
| Nov-Dec 2012                             | Seed Meal           | 4%                                | 425.7          | 119.5                   |  |
|                                          |                     | TOTAL                             | 4,987.3        | 1,647.7                 |  |





- 2. Lessons learnt for the future
- 2.1 What is gasification?
- 2.2 Gasification flexibility
- 2.3 Engineering plant modifications
- 2.4 "Demonstration project"
- 2.5 CO<sub>2</sub> capture experience



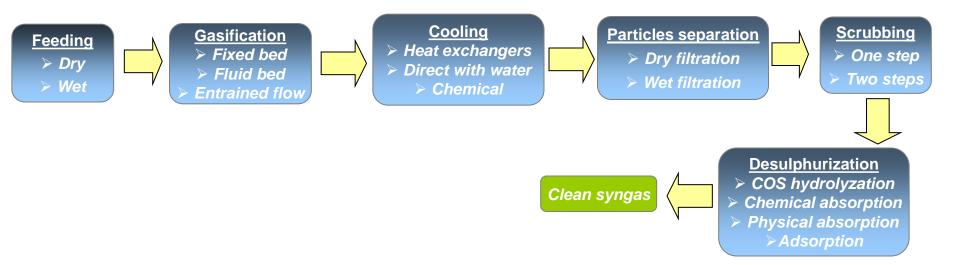


Gasification itself is not the core, neither the root of the project nor plant problematic.

On the contrary, they are the design & detailed engineering of the auxiliary systems.

Each plant is different because they depend on:

- Available raw fuel


- Chosen gasifier technology

- Expected use of syngas

- Environmental regulations

#### So, Engineering & O&M expertise are crucial

#### Syngas production by gasification. Processes

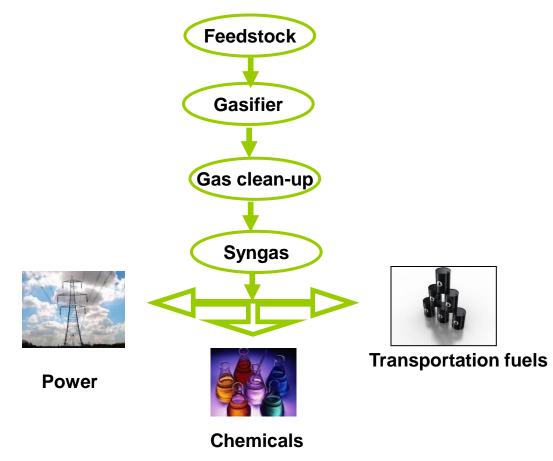






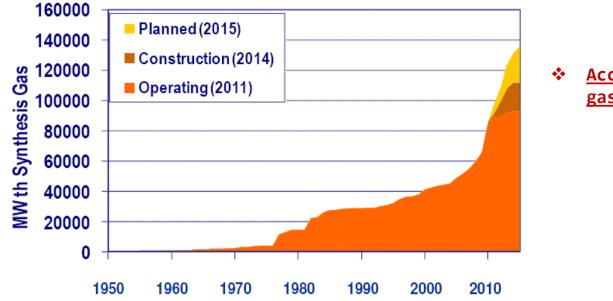
### 1. The ELCOGAS plant

- 2.1 What is gasification?
- 2.2 Gasification flexibility
- 2.3 Engineering plant modifications
- 2.4 "Demonstration project"
- 2.5 CO<sub>2</sub> capture experience



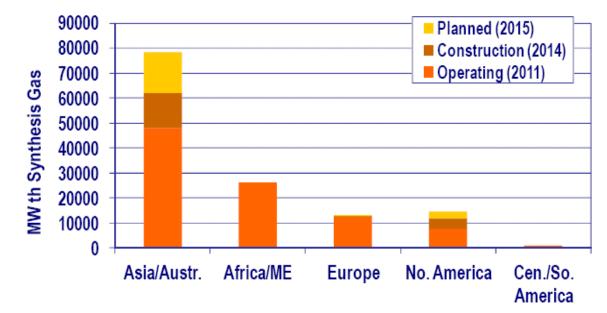

### Gasification flexibility




Selection of the best gasification technology depending on:

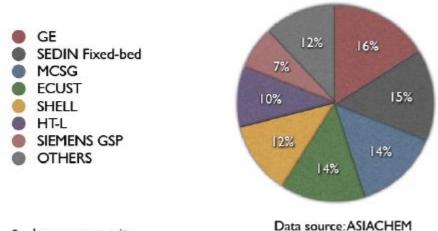
- Fuel (C content, LHV, available quantities)
- Gasifier size required to obtained a competitive product
- > Products required (H<sub>2</sub>, Chemicals, Fischer-Tropsch liquids, energy w/ CO<sub>2</sub> capture, ..)











#### <u>Accumulated world</u> <u>gasification capacity</u>

✤ Gasification by region



### Gasification deployment

#### Gasification Market Shares in China





- by syngas capacity
- including all constructed plants and contracted projects, as of Q3 2011

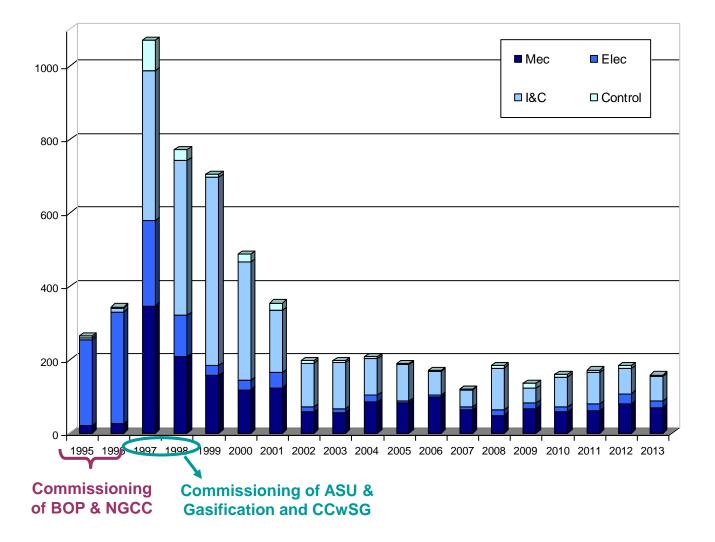
#### China Gasification Market Outlook 2011-2015

| Products                             | Capacity Million<br>tonne/year | Syngas Demands<br>Nm <sup>3</sup> /hour | Number of gasifiers<br>(3000 tonne/day per<br>gasifier) |
|--------------------------------------|--------------------------------|-----------------------------------------|---------------------------------------------------------|
| Coal to Liquids (CTL)                | 12                             | 9,710,000                               | 50                                                      |
| Coal to Olefins (CTO)                | 6                              | 3,660,000                               | 19                                                      |
| SNG                                  | $25 \times 10^9 \mathrm{Nm}^3$ | 8,710,000                               | 45                                                      |
| Ammonia                              | 13                             | 4,471,000                               | 23                                                      |
| Methanol (excluding CTO)             | 10                             | 2,290,000                               | 12                                                      |
| Methanol to Ethylene<br>Glycol (MEG) | 3                              | 1,500,000                               | 8                                                       |
| Total                                |                                | 30,341,000                              | 157                                                     |

(Fuente: EPRI, 2012)








- 2.1 What is gasification?
- 2.2 Gasification flexibility
- 2.3 Engineering plant modifications
- 2.4 "Demonstration project"
- 2.5 CO<sub>2</sub> capture experience

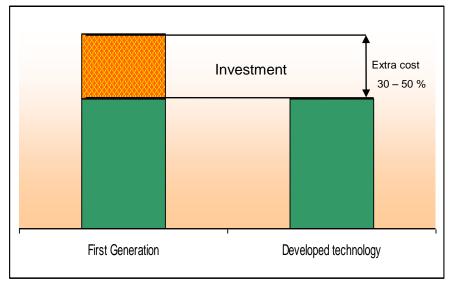
### Engineering plant modifications



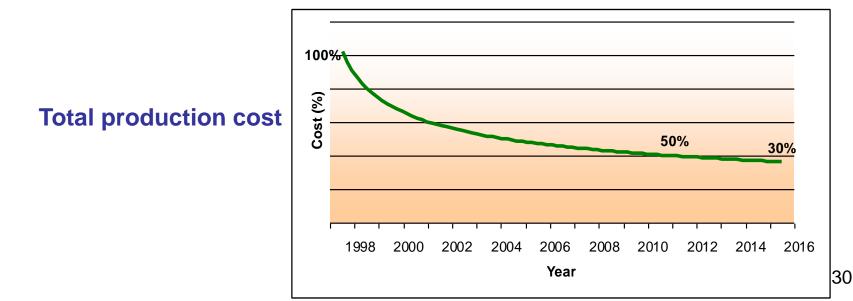
#### ANNUAL EVOLUTION OF APPROVED DESIGN CHANGES








- 2.1 What is gasification?
- 2.2 Gasification flexibility
- 2.3 Engineering plant modifications
- 2.4 "Demonstration project"
- 2.5 CO<sub>2</sub> capture experience





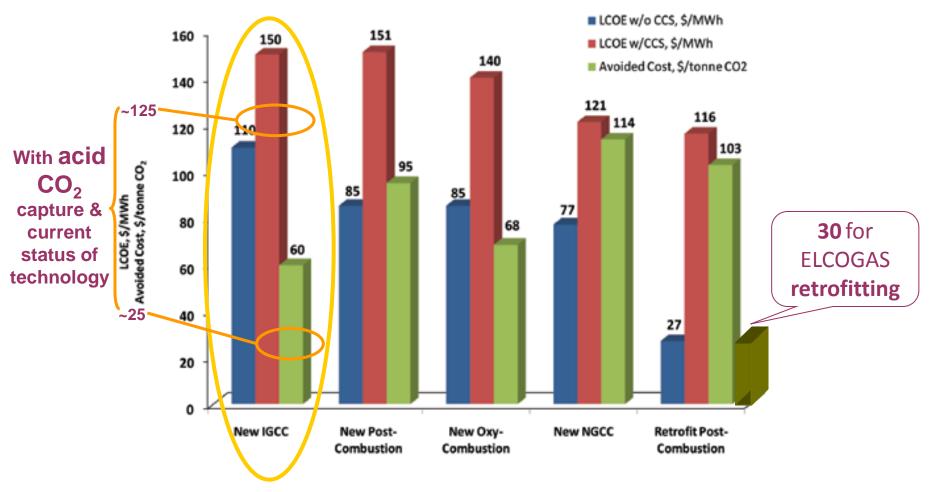

#### **Investment costs at ELCOGAS. Learning**



#### REGULATORY SUPPORT is essential in a technology demonstration project at commercial scale





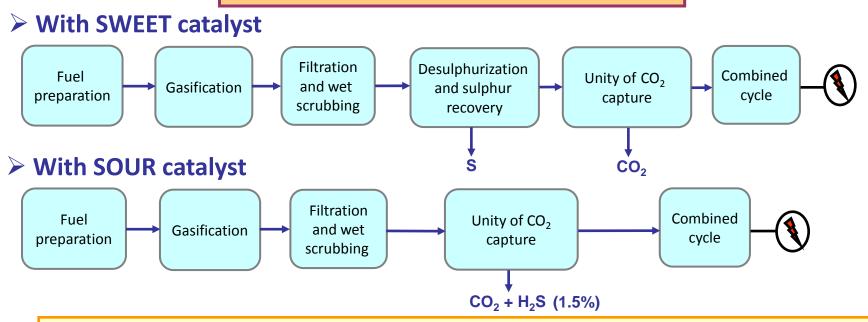



### 1. The ELCOGAS plant

- 2.1 What is gasification?
- 2.2 Gasification flexibility
- 2.3 Engineering plant modifications
- 2.4 "Demonstration project"
- 2.5 CO<sub>2</sub> capture experience

## CO<sub>2</sub> capture: Real experience at ELCOGAS

#### **Comparison between costs of CO<sub>2</sub> capture technologies**




Source: DOE/NETL CCS RD&D ROADMAP (December 2010)



## Real experience at ELCOGAS: results and learning

#### **CO<sub>2</sub>** capture in IGCC plants



Based on our CO<sub>2</sub> capture pilot plant, we have scaled the cost of a CO<sub>2</sub> capture unit at scale 1:1 about 350 M€. Approximately, it represents the cost of the desulphurization and sulphur recovery units in an IGCC w/o CO<sub>2</sub> capture.

By installing an IGCC with  $CO_2$  acid capture to store or use  $CO_2$  together with ~1.5% H<sub>2</sub>S, the investment costs are similar to those w/o CO<sub>2</sub> capture. And the only penalty is the **33%** currently decreasing efficiency: From 42-

> → 44% near future and from 50-





• Technology at commercial demonstration scale power plant requires a **long term regulatory frame** 

• **IGCC** with or without CCS is a promising technology with the **minimum variable costs and the best environmental performance and** it can be adapted to multifuel and polygeneration

Following IGCC generation must learn from existing plants

 Main burden for deployment is high investment requires a long term regulatory frame





#### Coal gasification in Spain – the future of sustainable coal

Francisco García Peña – ELCOGAS Puertollano IGCC plant

## THANK YOU FOR YOUR ATTENTION

#### fgarcia@elcogas.es